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Wildfires produce substantial CO2 emissions in the humid tropics during

El Niño-mediated extreme droughts, and these emissions are expected to

increase in coming decades. Immediate carbon emissions from uncontrolled

wildfires in human-modified tropical forests can be considerable owing to

high necromass fuel loads. Yet, data on necromass combustion during wildfires

are severely lacking. Here, we evaluated necromass carbon stocks before

and after the 2015–2016 El Niño in Amazonian forests distributed along a gra-

dient of prior human disturbance. We then used Landsat-derived burn scars

to extrapolate regional immediate wildfire CO2 emissions during the 2015–

2016 El Niño. Before the El Niño, necromass stocks varied significantly

with respect to prior disturbance and were largest in undisturbed primary for-

ests (30.2+2.1 Mg ha21, mean+ s.e.) and smallest in secondary forests

(15.6+3.0 Mg ha21). However, neither prior disturbance nor our proxy of

fire intensity (median char height) explained necromass losses due to wildfires.

In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (dis-

turbed and undisturbed) and 20 000 ha of secondary forest burned during the

2015–2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wild-

fires resulted in expected immediate CO2 emissions of approximately 30 Tg,

three to four times greater than comparable estimates from global fire emissions

databases. Uncontrolled understorey wildfires in humid tropical forests during

extreme droughts are a large and poorly quantified source of CO2 emissions.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
Increased concentrations of atmospheric CO2 during El Niño Southern Oscillation

events [1,2] have largely been attributed to emissions from the tropics [3,4], with

wildfires playing an important role [4,5]. In recent decades, despite a global
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Table 1. Forest classifications for pre-El Niño forest disturbance classes and the plot samples in 2010, 2014 – 2015 and 2017. The 2015 – 2016 sample occurred
after extensive wildfires and is a subset of the 2014 – 2015 sample.

pre-El Niño forest
class definition

necromass
assessment
(2010)

monitoring
of CWD
(2014 – 2015)

burned in 2015 –
2016 and
sampled in 2017

additionally
burned area
sampling (2017)

undisturbed primary

forest

primary forest with no evidence of

human disturbance, such as fire

scars or logging stumps

17 5 2 3

logged primary forest primary forest with evidence of

logging, such as logging stumps

26 5 4 1

burned primary forest primary forest with evidence of

recent fire, such as fire scars

7 0 0 0

logged-and-burned

primary forest

primary forest with evidence of both

logging and fire

24 4 1 4

secondary forest forest regenerating after complete

removal of native vegetation

33 4 0 1

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170312

2

 on October 8, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
reduction in burned vegetation area [6,7], relatively low-inten-

sity understorey wildfires that spread from agricultural lands

have increased in the fire-sensitive Amazon rainforest [8–11].

CO2 emissions from such wildfires are expected to grow

further [10] as fire-conducive weather patterns increase across

the humid tropics, particularly in South America [12].

Large-scale understorey wildfires in Amazonia are un-

precedented in recent millennia. During pre-Columbian

times, fires were limited to those occurring naturally from

lightning strikes and prescribed burns by indigenous peoples

[13]. These fires were localized and prescribed burns were

planned in accordance with environmental and ecological

conditions [13]. However, pervasive human modification of

tropical forest landscapes, through, for example, road building,

cattle ranching and timber exploitation, combined with severe

drought events and the widespread use of fire as a land

management tool, has fundamentally altered Amazonian fire

regimes. Today, uncontrolled large-scale understorey wildfires

are being witnessed in the Amazon with sub-decadal fre-

quency [14]. Such wildfires result in high rates of tree

mortality [15,16], shifts in forest structure [17,18] and drier

microclimatic conditions [19], ultimately leading to increased

susceptibility to future wildfires [19–21].

Carbon emissions from understorey wildfires can be

split into committed and immediate emissions. Committed

emissions result from the complex interplay between

delayed tree mortality and decomposition, and are depen-

dent on future climatic conditions and human influences.

Research indicates that long-term storage of carbon in wild-

fire-affected Amazonian forests can be compromised for

decades: even 31 years after a fire event, burned forests

store approximately 25% less carbon than unburned control

sites owing to high levels of tree mortality that are not

compensated by regrowth [22]. Immediate understorey

emissions are those that occur during wildfires and, in

contrast to committed emissions, are relatively simple to

estimate. Biome- and continent-wide analyses that rely on

satellite observations (known as top-down studies) suggest

that these immediate emissions from tropical forests can

be substantial [23,24] and, for example, can transform the
Amazon basin from a carbon sink to a large carbon source

during drought years [25].

One potentially important source of immediate carbon

emissions during wildfires is dead organic matter found on

forest floors. This necromass, which includes leaf litter and

woody debris, is a fundamental component of forest structure

and dynamics and can account for up to 40% of the carbon

stored in humid tropical forests [26–28]. During long periods

of drought, this large carbon pool can become highly flam-

mable [29]. However, studies quantifying necromass stocks

have overwhelmingly focused on undisturbed primary

forests [27]; studies that estimate necromass in human-

modified tropical forests—forests that have been structurally

altered by anthropogenic disturbance, such as selective logging

and fires, and those regenerating following deforestation (com-

monly called secondary forests; table 1)—are rare (cf. [30,31]).

This represents a key gap in our understanding because

human-modified tropical forests are increasingly prevalent

[32] and increasingly vulnerable to wildfires [33–35]. While

many local-scale, bottom-up studies have quantified combus-

tion characteristics and carbon emissions following fires

related to deforestation and slash-and-burn practices (see Van

Leeuwen et al. [36] for a recent review), we know of no study

that quantifies necromass before and after uncontrolled under-

storey wildfires in human-modified Amazonian forests. These

knowledge gaps and data shortfalls limit our understanding of

immediate carbon emissions from understorey wildfires.

Improving such estimates is essential for refining Earth Sys-

tems models and both national and global estimates of

greenhouse gas emissions.

Here, we address these knowledge gaps using a hybrid

bottom-up/top-down approach to study a human-modified

region of central-eastern Amazonia that experienced almost

1 million hectares (1 Mha) of understorey wildfires during

the 2015–2016 El Niño (figure 1). We combine data from a pre-

viously published large-scale field assessment of carbon stocks

[37] with on-the-ground measures of woody debris before and

after the 2015–2016 El Niño, proxies of fire intensity and cover-

age within study plots, and remotely sensed analyses of fire

extent across the region. Specifically, we (a) quantify carbon

http://rstb.royalsocietypublishing.org/
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Figure 1. (a) The 2017 land-use map across the approximately 6.5 Mha study region. (b) The land-use map within the RAS study area (shown by the white border
in (a)). Also shown in this panel are the locations of the 107 study plots (black circles). The 18 of these that were used for necromass monitoring are shown as
orange circles. The inset shows the Santarém study region (red circle) within South America, the Brazilian Amazon (green) and Pará (white border).
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stocks vulnerable to combustion across human-modified tropi-

cal forests in central-eastern Amazonia, (b) use post-burn

measures to investigate the factors influencing the loss of necro-

mass during wildfires, (c) estimate region-wide immediate

carbon emissions from wildfires and (d) compare these

region-wide emission estimates with those derived from

widely used global fire emissions databases.
2. Methods
(a) Quantifying necromass stocks in human-modified

Amazonian forests
We established 107 plots (0.25 ha) in human-modified forests in

central-eastern Amazonia in 2010 (figure 1). Plots were located

in the municipalities of Santarém, Belterra and Mojuı́ dos

Campos in the state of Pará, Brazil, and form part of the Sustain-

able Amazon Network (Rede Amazônia Sustentável (RAS) in

Portuguese [38]). Study plots covered a range of prior human

impacts (table 1) and included undisturbed primary forests

(n ¼ 17), primary forests selectively logged prior to 2010 (n ¼
26), primary forests burned prior to 2010 (n ¼ 7), primary forests

logged and burned prior to 2010 (n ¼ 24) and secondary forests

recovering after complete removal of vegetation (n ¼ 33; table 1).

Summary carbon estimates for these 107 plots can be found in

Berenguer et al. [37]. Here, we focused on carbon stored in their

necromass pools. We estimated necromass stocks in dead-stand-

ing tree and palm stems, coarse woody debris (CWD; �10 cm

diameter at one extremity), fine woody debris (FWD; �2

and ,10 cm diameter at both extremities) and leaf litter (includ-

ing twigs ,2 cm diameter at both extremities, leaves, and fruits

and seeds). Full carbon estimation methods can be found in

Berenguer et al. [37]. In brief, in each plot, we measured the diam-

eter and height of all large (greater than or equal to 10 cm

diameter at breast height (DBH)) dead tree and palm stems.

We measured the diameter and height of all small dead tree

and palm stems (�2 and ,10 DBH) in five subplots (5 � 20 m)

in each plot. We used the allometric equations of Hughes et al.
[39] and Cummings et al. [40] to estimate, respectively, carbon

stocks for dead-standing trees and palms. Subplots were also
used to estimate the diameters and lengths of all pieces of fallen

CWD. We estimated the volume of each piece of CWD using

Smalian’s formula [27] after accounting for the extent of damage

(i.e. void space). We multiplied the volume of each CWD piece

by its decomposition class to calculate CWD mass [30]. In all

study plots, we established five smaller subplots (2 � 5 m) to

assess FWD. This was sampled and weighed in the field. A sub-

sample (� 1 kg) was collected in each subplot and oven-dried to

a constant weight. The wet-to-dry ratios of the FWD samples

were used to estimate the total FWD stocks per plot. To estimate

the biomass of leaf litter, ten 0.5 � 0.5 m quadrats were estab-

lished in each plot. We oven-dried leaf litter samples to a

constant weight to get an estimate of the leaf litter stocks in

each plot. Biomass estimates for each necromass component

were then standardized to per hectare values, and the carbon con-

tent was assumed to be 50% of biomass dry weight [41]. See

electronic supplementary materials (§1) for all equations we

used to estimate necromass biomass.
(b) Longitudinal monitoring of coarse woody debris
To estimate necromass change through time, we continued to moni-

tor 18 of the 107 RAS plots (figure 1). These 18 plots were chosen

because they are spatially distributed across the region and we

were able to secure long-term authorization to monitor them.

They included undisturbed primary forests (n ¼ 5), primary forests

logged prior to 2010 (n ¼ 5), primary forest logged and burned prior

to 2010 (n ¼ 4), and secondary forests (n ¼ 4; table 1). We conducted

surveys of the 18 plots between November 2014 and September

2015, using a slightly altered sampling design to align with the

Global Ecosystem Monitoring protocol (see [42] for details). We

established five 1 � 20 m subplots in each of the 18 plots, measured

all pieces of CWD, and estimated their biomass and carbon content

following the methods outlined above (see Methods (a)).
(c) Impacts of El Niño-mediated wildfires on necromass
stocks

Extensive understorey wildfires burned seven of our 18 study

plots during the 2015–2016 El Niño, including two previously

undisturbed primary forests, four primary forests logged prior to

http://rstb.royalsocietypublishing.org/
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2010, and one primary forest that was logged and burned prior to

2010. To investigate necromass carbon stock losses due to these

wildfires, we resurveyed all 18 plots in June 2017. We re-measured

each individual piece of CWD and estimated biomass using the

methods described above (Methods (a)). By comparing CWD

stocks before and after the El Niño in the 11 plots that did not

experience wildfires, we were able to estimate CWD background

decomposition rates. By comparing CWD stocks before and after

the El Niño in the seven plots that burned, we were able to measure

CWD combustion completeness.

We used values from the 2010 surveys to provide estimates

of the pre-El Niño carbon stocks in leaf litter and FWD. Based

on visual inspection of the sites (electronic supplementary

material, figure S1), we assumed 100% combustion completeness

of these necromass components in the fire-affected proportion of

burned plots. Recognizing that this is a strong assumption, we

consider the validity of it in our Discussion. We did not consider

wildfire-mediated changes in necromass carbon stocks in dead-

standing trees and palms, owing to a lack of data on combustion

completeness.

In the seven plots that burned, we calculated average char

height for each stem, defined as the sum of the maximum and

minimum char heights divided by two. We then used these aver-

age stem char heights to calculate the plot-level median char

height, which we used as our proxy for fire intensity. In addition,

we used the proportion of sampled stems with burn scars as an

estimate of the area of each plot that burned (electronic sup-

plementary materials). To increase our sample of fire-affected

plots (to 16), we also measured the area burned in an additional

nine of the original RAS plots that were sampled during the 2010

censuses and burned during 2015–2016 (table 1). Prior to the

wildfires, these additional plots included undisturbed primary

forests (n ¼ 3), primary forests logged prior to 2010 (n ¼ 1), pri-

mary forests logged and burned prior to 2010 (n ¼ 4), and

secondary forests (n ¼ 1).

We used these data to estimate the per hectare necromass loss

(NL) attributable to wildfires using the following equation:

NL ¼ FLCWD � (CCCWD � DCWD)þ FLLLFWD � BA, ð2:1Þ

where FLCWD is the per hectare fuel load of CWD estimated from

the 107 RAS plots surveyed in 2010, CCCWD is the combustion

completeness of CWD estimated from seven of the 18 CWD

monitoring plots that burned during the 2015–2016 El Niño,

DCWD is the background CWD decomposition rate estimated

from the 11 CWD monitoring plots that did not burn during

the 2015–2016 El Niño, FLLLFWD is the per hectare fuel load of

leaf litter and FWD estimated from the 107 plots surveyed in

2010, and BA is the proportion of the plot that burned estimated

from the 16 RAS plots that burned (seven necromass monitoring

sites and nine additional sites in which burned area was

estimated) during the 2015–2016 El Niño (table 1).
(d) Data analysis
We used the Kruskal–Wallis test to investigate variation

across forest classes of prior human disturbance (table 1) and

used the Conover–Iman test with Bonferroni adjustments

to perform multiple pairwise comparisons of forest class

medians. We assessed differences across forest classes in:

carbon stocks stored in each necromass component (i.e. dead-

standing stems, CWD, FWD and leaf litter) from the 2010

survey; total and percentage necromass carbon stock losses in

the 18 plots surveyed between 2014 and 2017; and the pro-

portion/area of plots burned during the 2015–2016 El Niño.

We used linear regression to investigate the relationship between:

necromass carbon stocks before and after the 2015–2016 El Niño;

fire intensity and stock losses; and the burned area in each plot

and stock losses.
(e) Estimating burned area and region-wide emissions
from forest fires

To estimate wildfire-mediated carbon emissions from necromass

across our study region, we first calculated the cumulative area

of primary and secondary forest that experienced understorey

wildfires during 2015–2016 in the central-eastern region of the

Amazon, an area of approximately 6.5 Mha (figure 1). We built a

time-series of Landsat (5, 7 and 8) imagery from 2010 to 2017 for

the RAS study region and the surrounding area from the EROS

Science Processing Architecture (ESPA)/U.S. Geological Survey

(USGS) website (https://espa.cr.usgs.gov). We performed an

unsupervised classification of raw imagery, followed by manual

correction of classification errors, to identify several land-uses

throughout the time-series (see electronic supplementary material,

table S2 for all land-use classes and §2 for a detailed description of

burned area detection). We then used the burned area of primary

and secondary forests and estimates of per hectare necromass stock

losses from wildfires (equation (2.1)) to determine region-wide

necromass carbon emissions, using a conversion factor of

3.286 kg of CO2 per kg of C [43]. This conversion factor does not

include other forms of emitted C (such as CO), in keeping with

global fire emissions databases.

We took two approaches to account for uncertainty in expected

regional necromass emissions. First, we considered four land-use

scenarios using two sets of primary and secondary forests (elec-

tronic supplementary material, table S1). To account for potential

variation in fire susceptibility across primary forest disturbance

classes, we estimated the five variables in equation (2.1) using all

undisturbed and disturbed primary forest classes (prim1) and

then only disturbed primary forests (prim2). For secondary forests,

we used CCCWD and FLLLFWD from all secondary forests, used

DCWD and BA from all forest classes combined, and used

CCCWD from all primary forest classes because none of the second-

ary forest plots we were monitoring for changes in CWD burned

during 2015–2016 (sec1). Our other scenario for secondary forests

(sec2) was more restrictive: we used the fuel load (FLCWD,

FLLLFWD), decomposition (DCWD), and BA values from secondary

forests only and combined these with all CCCWD values we had

from disturbed and undisturbed primary forests.

Second, to account for uncertainty in the distribution of the

variables in equation (2.1), we ran 1000 bootstrap with replace-

ment simulations to determine each variable’s mean value and

standard error. We calculated the standard error of equation (2.1)

using the variable standard errors, accounting for error propa-

gation, and we constructed 95% confidence intervals for equation

(2.1) as its mean value+1.96 times the standard error of the mean.

( f ) Emissions and burned area comparisons with global
databases

We compared our region-wide CO2 emission estimates with two

fire emissions databases frequently used in Earth Systems models

and carbon budgets: the Global Fire Emissions Database (GFED)

version 4.1s [44] and the Global Fire Assimilation System (GFAS)

version 1.1 [45]. For both datasets, we obtained data for our

study period (August 2015–July 2016) and cropped them to our

approximately 6.5 Mha study region, shown in figure 1.

We first calculated cumulative emissions from GFED and GFAS

(electronic supplementary material) and compared these with our

emissions estimates. Second, to investigate potential sources of dis-

crepancy between estimates, we spatially mapped GFED, GFAS

and our CO2 emissions estimates. At both GFED and GFAS resol-

utions (0.258 and 0.18, respectively), we mapped our mean (across

land-use scenarios; electronic supplementary material, table S1)

expected emissions assuming that emissions were constant in a

burned area (i.e. if a cell contained x% of the burned area, we

assumed it accounted for x% of the total emissions). Finally, because

https://espa.cr.usgs.gov
https://espa.cr.usgs.gov
http://rstb.royalsocietypublishing.org/
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GFED also provides estimates of the area burned at 0.258, we used

our land-use map to estimate burned area at that resolution.
3. Results
(a) Necromass carbon stocks across human-modified

Amazonian forests
Total necromass and its components varied significantly with

respect to forest class ( p , 0.05 in all cases; figure 2). Primary

forests contained significantly higher total necromass than sec-

ondary forests ( p , 0.01 for all pairwise comparisons), with the

highest total found in undisturbed primary forests (30.2+
2.1 Mg ha21, mean+ s.e.). By contrast, secondary forests con-

tained only half as much necromass as undisturbed primary

forests (15.6+3.0 Mg ha21). Variation in total necromass was

driven in large part by variation in CWD, which accounted

for 61.3+2.7% of the total necromass stocks across forest

classes. Leaf litter was the next most important component of

total necromass, with 19.8+2.7% residing in this component.

Dead-standing stems accounted for 14.4+1.8% of total necro-

mass. Finally, FWD was by far the smallest necromass

component, harbouring just 4.6+0.2% of the total.

(b) Impacts of El Niño-mediated wildfires on necromass
stocks

On average, we estimate that 87.1+ 2.7% of the ground area

of our fire-affected study plots burned, and there was no sig-

nificant difference in the total burned area of fire-affected

plots across forest classes (x2
3 ¼ 2:1; p ¼ 0.56). From the 88

CWD pieces measured before the fires, 54 completely

burned, 32 had partial combustion, and two were untouched

by fire. CWD carbon stock losses from combustion varied

from 38 to 94% (mean 65.4%, s.e. 7.1%) at the plot-level.
Necromass carbon stock losses in the seven burned plots

were unrelated to median char height (R2 ¼ 0.09; p ¼ 0.51;

figure 3a) and area of plot burned (R2 ¼ 0.10; p ¼ 0.49;

figure 3b). Forest class did not predict necromass carbon stock

losses in burned sites when expressed as either percentage

(x2
2 ¼ 2:25; p ¼ 0.32) or total (x2

2 ¼ 1:12; p ¼ 0.57) loss. Simi-

larly, forest class did not predict necromass losses in

unburned sites when expressed as either percentage

(x2
3 ¼ 1:58; p ¼ 0.66) or total (x2

3 ¼ 2:18; p ¼ 0.54) loss.

On average, burned sites lost 73.0+4.9% of their pre-El

Niño necromass stocks (figure 4), compared with a 26.1+
4.8% reduction in unburned sites (from decomposition). As

expected, pre-El Niño necromass stocks strongly predicted

post-El Niño necromass in our unburned sites (R2 ¼ 0.95;

p , 0.001; figure 4a). This relationship disappeared in fire-

affected plots (R2 ¼ 0.08; p ¼ 0.54; figure 4b), indicating that

combustion completeness was insensitive to initial necromass

stocks. Despite our small sample size, visual inspection

suggests that these findings were unaffected by forest class.

(c) Region-wide burned area and estimates of carbon
stock losses

During the 2015–2016 El Niño, 15.2% of our study region

and 982 276 ha of forest experienced understorey wildfires.

These wildfires were overwhelmingly concentrated in pri-

mary forests: less than 2% of the burned area was in

secondary forests, despite these accounting for 9% of the

forest cover in our study region. When considering all

primary and secondary forest plots (prim1 þ sec1), resultant

necromass carbon stock losses amounted to 10.06 Tg (95%

confidence interval, 5.85–14.27 Tg). Converting to CO2, this

is equivalent to expected emissions of 33.05 Tg (95%

confidence interval, 19.22–46.87 Tg; figure 5). Our mean

CO2 emission estimates were relatively insensitive to the
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Figure 5. Immediate CO2 emissions for wildfires in central-eastern Amazo-
nian human-modified tropical forests. Points show expected emissions for
four land-use scenarios (see §2e and electronic supplementary material,
table S1): (a) prim1 þ sec1; (b) prim2 þ sec1; (c) prim1 þ sec2; (d)
prim2 þ sec2. Error bars show 95% confidence intervals. Also shown are
cumulative CO2 emissions for our study region and period from GFED 4.1s
(short-dashed line) and GFAS version 1.1 (long-dashed line).
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land-use scenarios (figure 5). However, the 95% confidence

interval was substantially wider with land-use scenario

prim2 (scenarios b and d; figure 5) owing to greater uncer-

tainty in decomposition rates when restricted to disturbed

primary forest only compared with all primary forests—

undisturbed and disturbed—combined.

(d) Comparing our results with global fire emission
databases

Both GFED and GFAS vastly underestimated expected wildfire

CO2 emissions for our study region and period. Respectively,

these databases suggest cumulative emissions that are 77%

and 68% lower than the expected value we found with land-

use scenario a (prim1 þ sec1; figure 5). These discrepancies

can be explained by the underdetection of understorey wild-

fires by both GFED and GFAS algorithms. This can be seen

across our whole study region but is particularly evident in

areas free from historic deforestation (figure 6). GFED and

GFAS appeared to be more successful at detecting fires in agri-

cultural areas with lower levels of forest cover (figure 6).

Highlighting the insensitivity of GFED to understory wildfires,

this database suggests that, at most, 6% of any given 0.258 cell

across our study region, and approximately 90 000 ha in total,

burned during the 2015–2016 El Niño (figure 6e). By contrast,

we show that as much as 74% of a cell (figure 6f ) and almost

1 Mha of forest was affected by understory wildfires.
4. Discussion
(a) Region-wide carbon emissions from El Niño-

mediated wildfires
We investigated necromass carbon stocks in human-modified

forests before and after large-scale understorey wildfires in cen-

tral-eastern Amazonia that occurred during the 2015–2016 El

Niño. Our novel assessment revealed that expected immediate
necromass CO2 emissions from these wildfires are around

30 Tg (figure 5). This is equivalent to total CO2 emissions

from fossil fuel combustion and the production of cement in

Denmark, or 6% of such emissions from Brazil, in 2014 [46].

Consequently, wildfire-mediated immediate carbon emissions,

which are not currently considered under national greenhouse

gas inventories [47], represent a large source of CO2 emissions.

Moreover, these immediate emissions will be greatly exacer-

bated by further committed emissions resulting from tree

mortality, which can be as high as 50% [16] and may not be

balanced by post-fire regrowth on decadal time scales [22].

Our results add to work on prescribed burns associated

with deforestation [36], contributing important information

about the role of El Niño-mediated wildfires. The scale of the

immediate emissions we estimated, coupled with future com-

mitted emissions, make wildfires particularly relevant to

climate change mitigation programmes such as REDDþ
[9,48]. For REDDþ to succeed in Amazonia, we demonstrate

that forests must be protected from wildfires, as even the

immediate emissions from large-scale wildfires can equal

those from whole countries. Future climate change will make

this only more imperative, with extreme droughts, higher

temperatures, and reduced rainfall all predicted for the

Amazon basin in the near future [49–51]. Wildfires may

also undermine the important role that protected areas have

historically served as carbon stores [52], as illustrated by the

large areas burned in the Tapajós National Forest and the

Tapajós-Arapiuns Extractive Reserve (figure 1).
(b) Fuel loads in humid tropical forests
Total necromass carbon stocks in the 107 RAS plots surveyed

in 2010 did not vary significantly between disturbed and

undisturbed primary forests (figure 2e). The mean value

we found for total necromass carbon stocks in undistur-

bed forests was 30.2+2.1 Mg ha21. This value is broadly

consistent with previous estimates for the eastern Amazon.

For example, Keller et al. [30] and Palace et al. [31] found

necromass carbon stocks of, respectively, 25.4 and

29.2 Mg ha21 in undisturbed primary forests in the Tapajós

region of Pará. In primary forests disturbed by reduced-

impact logging, these studies found, respectively, 36.4 and

42.75 Mg ha21 of necromass carbon. However, our estimates

for necromass stocks in disturbed primary forests are mark-

edly lower (figure 2e). This discrepancy is likely a function

of time since disturbance. Keller et al. [30] and Palace et al.
[31] assessed necromass carbon stocks soon after disturbance,

when necromass stocks are likely to be higher. By contrast,

disturbance of RAS sites occurred between 1.5 and 25 years

before the 2010 surveys. Necromass stocks can be highly

dynamic, with residence times for most CWD estimated at

less than a decade [28], especially in the case of small diam-

eter and low wood density tree species [53]. Thus, necromass

stocks in many of our disturbed primary forest sites may have

had time to decrease to an equilibrium level, similar to that of

undisturbed forests, where input and decomposition are

largely balanced.

We did, however, find significantly larger necromass stocks

in primary forests compared with secondary forests. This may

be explained by (a) pre-abandonment secondary forest land-

uses removing all fallen biomass with machinery or intensive

fires; (b) the smaller necromass input pool in secondary forests

owing to lower levels of aboveground live biomass [37]; and

http://rstb.royalsocietypublishing.org/
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(c) the lower wood density of stems in secondary forests [54],

resulting in more rapid CWD decomposition.

(c) Impacts of El Niño-mediated wildfires on
necromass stocks

On average, we estimate that wildfires burned 87.1+2.7% of

our fire-affected necromass monitoring plots (figure 3b). This

figure is substantially higher than the 62–75% burn coverage

measured during experimental fires in previously undisturbed

transitional Amazonian forests [18]. The areal extent of these
wildfires reduced necromass (in CWD, FWD and leaf litter)

carbon stocks by 46.9+6.9%, when gross necromass loss

(73.0+4.9%) was corrected for decomposition (26.1+4.8%).

The understorey wildfires that affected our burned plots

were relatively low intensity, with maximum median char

height of 20.5 cm. Nonetheless, our findings demonstrate

that these low-intensity wildfires can dramatically diminish

necromass stocks in human-modified tropical forests.

Further, both area of plot burned and necromass carbon

stock losses showed little variation across disturbance classes.

This may indicate that the 2015–2016 El Niño, which was

http://rstb.royalsocietypublishing.org/
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one of the strongest in recorded history, produced drought

conditions so severe that necromass moisture content was

reduced across all forest classes to a level that permitted com-

bustion and sustained fires, overriding any pre-existing

microclimatic differences that may have existed owing to

the initial disturbance. This is further corroborated by the

fact that wildfires did not distinguish between largely undis-

turbed forests (mostly inside protected areas) and those that

have been modified by humans (mostly outside protected

areas), burning vast areas of both types of forest (figure 1).

(d) Caveats
Though our dataset is the first to our knowledge that allows

for quantification of necromass carbon stocks pre- and

post-uncontrolled understorey wildfires in human-modified

Amazonian forests, our sample size was limited, with just 18

necromass monitoring plots, of which seven burned during

the 2015–2016 El Niño. Consequently, results that follow

from these samples should be treated with a degree of caution.

In particular, we found that necromass stock losses were not

significantly related to our plot-level estimate of burned area

and that fire susceptibility did not appear to vary across dis-

turbance classes. In both cases, the lack of significance may

reflect the small sample sizes rather than a genuine lack of

relationship.

Moreover, owing to the limitations of our data, we assumed

100% combustion of leaf litter and FWD in the fraction of plots

that burned when calculating necromass carbon losses

(equation (2.1)). In a recent review, Van Leeuwen et al. [36]

found that mean combustion completeness of leaves, litter

and smaller classes of woody debris was 73–94%. However,

as they acknowledge, combustion completeness can be signifi-

cantly higher during El Niño years. Thus, given the strength of

the 2015–2016 El Niño, and our personal observations (elec-

tronic supplementary material, figure S1), our combustion

completeness assumption is likely to be reasonable.

Because of our small sample size, the 95% confidence inter-

vals for our region-wide CO2 immediate emissions were wide,

ranging from around 8 Tg to almost 48 Tg. Future research

efforts should prioritize necromass monitoring in a larger

number of sites, across a range of tropical forests, to better con-

strain these values; as we show, such emissions have the

potential to significantly exacerbate global climate change.

Despite the above limitations, there are reasons to suspect

that our necromass stock loss and carbon emission estimates

are highly conservative. First, we did not measure wildfire-

induced carbon changes in the soil organic layer, yet research

from the same region suggests that wildfires significantly

reduce soil carbon pools [55]; nor could we estimate combustion

of dead-standing stems, which accounted for approximately

15% of total necromass (figure 2). Second, none of the disturbed

primary forest plots in which we monitored necromass changes

was recently disturbed prior to the 2015–2016 wildfires,

allowing time for decomposition to reduce high levels of post-

disturbance necromass. Had our sample included recently

disturbed sites, necromass losses would have been greater.

Third, detection of low-intensity understorey wildfires con-

tinues to present a remote sensing challenge. Although

manual correction of our unsupervised land-use classifications

revealed only a small number of misclassifications, it is possible
that some wildfire-affected sites were missed, leading to an

underestimation of regional emissions.

In addition to showing that wildfire carbon emissions can

be substantial, we also showed that such emissions remain

poorly quantified. GFED and GFAS, CO2 emission databases

that are widely used in Earth Systems models and carbon bud-

gets, returned considerably lower emission estimates for our

study region and period than our expected values (figure 5).

Nevertheless, the scale of this discrepancy is underestimated

for several reasons. First, we focused solely on necromass

carbon losses from understory wildfires, whereas GFED and

GFAS include emissions from all land-use classes combined.

Both databases therefore account for grassland and agricultural

fires, which can affect large areas of human-modified tropical

landscapes. Second, GFED includes both committed and

immediate CO2 emissions. Third, and again with respect to

GFED, fuel loads are much high than those present in our

post-disturbance plots, because they are primarily derived

from slash-and-burn and deforestation studies.

(e) Conclusion
We demonstrate that there was a substantial loss of necromass

following El Niño-mediated wildfires in the central-eastern

Amazon. We conservatively estimate that wildfires in this

region burned 982 276 ha (15.2% of our study region) of pri-

mary and secondary forest, resulting in expected immediate

CO2 emissions of approximately 30 Tg. Better understanding

this large and poorly quantified source of atmospheric

carbon is crucial for climate change mitigation efforts.
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